Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems

نویسندگان

  • Peter Benner
  • Jing-Rebecca Li
  • Thilo Penzl
چکیده

We study large-scale, continuous-time linear time-invariant control systems with a sparse or structured state matrix and a relatively small number of inputs and outputs. The main contributions of this paper are numerical algorithms for the solution of large algebraic Lyapunov and Riccati equations and linearquadratic optimal control problems, which arise from such systems. First, we review an alternating direction implicit iteration-based method to compute approximate low-rank Cholesky factors of the solution matrix of large-scale Lyapunov equations, and we propose a refined version of this algorithm. Second, a combination of this method with a variant of Newton’s method (in this context also called Kleinman iteration) results in an algorithm for the solution of large-scale Riccati equations. Third, we describe an implicit version of this algorithm for the solution of linear-quadratic optimal control problems, which computes the feedback directly without solving the underlying algebraic Riccati equation explicitly. Our algorithms are efficient with respect to both memory and computation. In particular, they can be applied to problems of very large scale, where square, dense matrices of the system order cannot be stored in the computer memory. We study the performance of our algorithms in numerical experiments. Copyright q 2008 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi - Level Technique for the Approximate Solution of Operator Lyapunov andAlgebraic Riccati

We consider multi-grid, or more appropriately, multi-level techniques for the numerical solution of operator Lyapunov and algebraic Riccati equations. The Riccati equation, which is quadratic, plays an essential role in the solution of linear-quadratic optimal control problems. The linear Lyapunov equation is important in the stability theory for linear systems and its solution is the primary s...

متن کامل

A Multi-level Technique for the Approximate Solution of Opertaor Lyapunov and Riccati Equations

We consider multi-grid, or more appropriately, multi-level techniques for the numerical solution of operator Lyapunov and algebraic Riccati equations. The Riccati equation, which is quadratic, plays an essential role in the solution of linear-quadratic optimal control problems. The linear Lyapunov equation is important in the stability theory for linear systems and its solution is the primary s...

متن کامل

Optimal integrated passive/active design of the suspension system using iteration on the Lyapunov equations

In this paper, an iterative technique is proposed to solve linear integrated active/passive design problems. The optimality of active and passive parts leads to the nonlinear algebraic Riccati equation due to the active parameters and some associated additional Lyapunov equations due to the passive parameters. Rather than the solution of the nonlinear algebraic Riccati equation, it is proposed ...

متن کامل

On the Parameter Selection Problem in the Newton-adi Iteration for Large Scale Riccati Equations

The numerical treatment of linear-quadratic regulator problems for parabolic partial differential equations (PDEs) on infinite time horizons requires the solution of large scale algebraic Riccati equations (ARE). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lyapunov equation by the alternating directions implicit (ADI) algorithm in each ...

متن کامل

Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms

The numerical treatment of the linear-quadratic optimal control problem requires the solution of Riccati equations. In particular, the differential Riccati equations (DRE) is a key operation for the computation of the optimal control in the finite-time horizon case. In this work, we focus on large-scale problems governed by partial differential equations (PDEs) where, in order to apply a feedba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerical Lin. Alg. with Applic.

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2008